

Page: 1 of 43

EMC Test Report

Report Number: UCSCE-1902-0011

Applicant

Bullsone 306th and 6th floors of Teheran-ro, Gangnam-gu, Seoul

Manufacturer

UIL 869-26, Bogwang-ro, Gwangtan-myeon, Paju-si, Gyenggi-do, 10952

Test information

Test product: Air theraphy smartaction Test model name: Bullsone air theraphy smartaction Received number: UCS-R-2019-0121 Test date: 2019.02.07 ~ 2019.02.08 Issued Date: 2019.02.14

Test standards

EN 55014-1:2006/A2:2011 EN 55014-2:2015 EN 61000-3-2:2014 EN 61000-3-3:2013

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This Test Report cannot be reproduced, except in full.

Tested by: J.H. Park

y any

Approved by: I.Y. Jeong

UQE-TRF-01(Rev.1)

Page: 2 of 43

Product information

Division	Main Specifications and Characteristics		
Power	Adpater in : 230 V~, 50 Hz		
Weight	545 g		
Size	120 mm x 209 mm x 70 mm		
Material	ABS/PC		

Specifications: Refer to the manual

Page: 3 of 43

Contents

1. Testing laboratory	. 5
1.1 Location	. 5
2. Test Configuration and Condition	. 6
2.1 EUT operating condition	. 6
2.2 EUT test configuration diagram	. 6
2.3 Peripheral equipments list for test	. 6
2.4 Cable connections	. 6
2.5 EUT modifications	. 6
3. Summary of Test Results	. 7
4. Test Results	. 8
4.1 Mains terminal continuous disturbance voltage	. 8
4.2 Mains terminal discontinuous disturbance voltage	11
4.3 Disturbance power	13
4.4 Harmonics current emissions	15
4.5 Voltage changes, Voltage fluctuations and flicker	19
4.6 Electrostatic discharge	21
4.7 Electric fast transient/burst immunity	24
4.8 Surge immunity	26
4.9 Conducted disturbance induced by RF fields immunity	28
4.10 Voltage dips and short interruptions	30
5. EUT Photos	32
5.1 Test Setup Photographs	32
5.1.1 Conducted disturbance (AC mains power ports)	32
5.1.2 Mains terminal discontinuous disturbance voltage	33
5.1.3 Disturbance power	33
5.1.4 Harmonics current emissions	34
5.1.5 Voltage changes, Voltage fluctuations and flicker	34
5.1.6 Electrostatic discharge	35
5.1.7 Electric fast transient/burst immunity	35
5.1.8 Surge immunity	36
5.1.9 Conducted disturbance induced by RF fields immunity	36
5.1.10 Voltage dips and short interruptions	37
5.2 External Photographs of EUT	38
5.3 Internal Photographs of EUT	39

UQE-TRF-01(Rev.1)

Page: 4 of 43

Report Number: UCSCE-1902-0011

5.3.1 Internal view	
5.3.2 Internal board view	40

Revision History

Issued Report No.	Issued Date	Revisions	Effect Section
UCSCE-1902-0011 14-Feb-2019		Initial Issue	All

This report shall not be reproduced except in full, without the written approval of UCS Co., Ltd.

This document may be altered or revised by UCS Co., Ltd. personnel only, and shall be noted in the revision section of the document.

Any alteration of this document not carried out by UCS Co., Ltd. will constitute fraud and shall nullify the document.

Page: 5 of 43

1. Testing laboratory

1.1 Location

UCS Co., Ltd. Office: #702, 268, Hagui-ro, Dongan-gu, Anyang-si, Gyeonggi-do, 14056, KOREA. Tel: +82-1833-5681 Fax: +82-31-420-5685 EMC Center: 161-8, Ansandong-gil, Hwaseong-si, Gyeonggi-do, Korea EMC Test Site: 35-13, Hwalcho-gil, 109beon-gil, Hwaseong-si, Gyeonggi-do, 18278, KOREA Tel: +82-1833-5681 Fax: +82-31-355-5848

Laboratory Accreditations and Listings

Country	Agency	Registration Number	Logo
USA	FCC	803225	FC
KOREA	RRA	KR0045	C
KOREA	KOLAS	KT263	

2. Test Configuration and Condition

2.1 EUT operating condition

- Test the EUT continuously.
- Input power condition during the measurements was 230 V~, 50 Hz.

2.2 EUT test configuration diagra

2.3 Peripheral equipments list for test

Equipment Name	Model	Serial Number	Manufacturer	
Air theraphy smartaction Bullsone air theraphy smartaction		-	UIL	
AC/DC Adapter	ANY12100C-1	18A402051	Wendeng ANY Electronics Co., Ltd.	

2.4 Cable connections

Start		End		Cable	
Name	I/O Port	Name	I/O Port	Length (m)	Spec.
Air theraphy smartaction	DC-IN	AC/DC Adapter	DC-OUT	1.4	Unshielded

2.5 EUT modifications

- None

3. Summary of Test Results

3.1 Summary of test results

Standard	Test Item	Results	
	Mains terminal continuous disturbance voltage	Met / PASS	
EN 55014-1:2006/A2:2011	Mains terminal discontinuous disturbance voltage	Met / PASS	
	Disturbance Power	Met / PASS	
	Radiated disturbance	N/A (See note 1)	
EN 61000-3-2:2014 Harmonics current emissions		Met Class A / Pass	
EN 61000-3-3:2013	Voltage changes, Voltage fluctuations and flicker	Met / Pass	
	Electrostatic Discharge	A Met by Criterion / Pass	
	Radiated RF electromagnetic field immunity	N/A (See note 2)	
EN 55014-2:2015(Category II)	Electrical Fast Transient/Burst Immunity	A Met by Criterion / Pass	
	Surge Immunity	A Met by Criterion / Pass	
	Conducted RF Field Immunity (Injected currents)	A Met by Criterion / Pass	
	Voltage Dips, Short Interruptions Immunity	A Met by Criterion / Pass	

* Note 1: This test is not performed because the EUT is tested to disturbance power. (The EUT meets the limit of the additional margin in the 200 MHz to 300 MHz band and it uses a clock frequency of less than 30 MHz.)
* Note 2: This test is not performed because the EUT is get even up.

* Note 2: This test is not performed because the EUT is category II.

3.2 Performance of criteria

Performance criterion A

During and after the test the EUT shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a minimum performance level specified by the manufacturer when the EUT is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the EUT if used as intended.

Performance criterion B

After the test, the EUT shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the EUT is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test. If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the EUT if used as intended.

Performance criterion C

During and after testing, a temporary loss of function is allowed, provided the function is selfrecoverable, or can be restored by the operation of the controls or cycling of the power to the EUT by the user in accordance with the manufacturer's instructions. Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

Page: 8 of 43

4. Test Results

4.1 Mains terminal continuous disturbance voltage

Test Standard		EN 55014-1:2006/A2:2011				
Teat venue	Shield Room 2					
Tested Date	2019.02.07					
Input Ratings	230 V~, 50 Hz					
Temperature	18.6 °C Humidity 33.2 % R.H.					
Test result	Met / Pass					

4.1.1 Limit

Frequency	Mains te	erminals	Load and additional terminals		
[MHz]	[MHz] Quasi-Peak [dBµV] Av		Quasi-Peak [dBµV]	Average [dBµV]	
0.15 ~ 0.5	66 ~ 56*	59 ~ 46*	80	70	
0.5 ~ 5	56	46	74	64	
5 ~ 30	60	50	74	64	

* The limit decreases linearly with the logarithm of frequency.

4.1.2 Test set-up and procedure

The mains terminal disturbance voltage was measured with the equipment under test (EUT) in a shield room. The EUT was connected to an artificial mains network (LISN) placed on the floor.

The EUT was placed on non-metallic table 0.8 m above the metallic, grounded floor.

Amplitude measurements were performed with a quasi-peak detector and an average detector.

4.1.3 Test equipment used

Equipment	Model	Serial No. Vendor		Next Cal. Date	Use
Test Receiver	st Receiver ESR7 101120 ROHDE & SCHWARZ		2019.08.03		
LISN	NSLK 8127	8127518 SCHWARZBECK		2019.08.03	
Two-Line V-Network	ENV216	3560.6550.12- 101874-Rq SCHWARZ		2019.08.03	
Two-Line V-Network	ENV216	3560.6550.12- 102073-Ax	ROHDE & SCHWARZ	2019.08.03	•
Four-Line V-Network	ENV432	101284	ROHDE & SCHWARZ	2019.08.03	
ARTFICIAL MAINS NETWORK	L3-32	1220X20311	РММ	-	

Page: 9 of 43

4.1.4 Test data Test data

-	Frequency	Range	:1	150	kHz	~	30	MHz
---	-----------	-------	----	-----	-----	---	----	-----

- Bandwidth : 9 kHz

[Quasi-Peak]

Frequency [MHz]	LISN [dB]	Cable Loss [dB]	Line [H/N]	Limit [dBµV]	Reading [dBµV]	Results [dBµV]	Margin [dB]
0.15	9.70	0.03	Н	66.00	29.30	39.03	-26.97
0.26	9.60	0.01	Ν	61.43	25.21	34.82	-26.61
0.60	9.81	0.02	Ν	56.00	20.94	30.77	-25.23
1.05	9.69	0.03	Ν	56.00	21.52	31.24	-24.76
1.41	9.68	0.05	Н	56.00	20.97	30.70	-25.30
1.98	9.63	0.07	Ν	56.00	20.01	29.71	-26.29
3.78	9.64	0.12	Н	56.00	20.69	30.45	-25.55
5.79	9.63	0.16	Ν	60.00	16.92	26.71	-33.29
10.09	9.66	0.21	Ν	60.00	14.42	24.29	-35.71
23.41	9.68	0.32	N	60.00	16.79	26.79	-33.21
29.12	9.68	0.36	Н	60.00	15.13	25.17	-34.83

[Average]

Frequency [MHz]	LISN [dB]	Cable Loss [dB]	Line [H/N]	Limit [dBµV]	Reading [dBµV]	Results [dBµV]	Margin [dB]		
	* Average m								
	* Average mode was not recorded, because Quasi-Peak values were under the Average limit.								

Conducted emission, quasi-peak detection: 2.2 dB

Conducted emission, average detection: 2.2 dB

Conducted emission, Telecom port: 1.8 dB

The measurement uncertainty is given with a confidence of 95 % with the coverage factor, k = 2.

Page: 10 of 43

4.1.5 Test graph (AC mains power ports)

UQE-TRF-01(Rev.1)

Page: 11 of 43

4.2 Mains terminal discontinuous disturbance voltage

Test Standard		EN 55014-1:2006/A2:2011				
Teat venue	Shield Room 2					
Tested Date		2019.02.07				
Input Ratings		230 V~, 50 Hz				
Temperature	(19.3 ± 0.1) °C	Humidity	(32.2 ± 0.1) % R.H.			
Test result		Met / Pass				

4.2.1 Test set-up and procedure

The initial test was made to count discontinuous disturbance classified as clicks (n) over the Q-Peak limits of mains terminals disturbance voltage at each frequencies.

The test was observed for 120 min (T) for each measurement.

The click rate "N" was determined from the formula N = n * f/T.

The relevant click limit "Lq" for discontinuous disturbance was determined in according the formula given in EN 55014-1, Clause 4.2.2.2.

The second test run was made to determine how many clicks exceed the click limit "Lq" the time for this second run was the same as the time taken for initial test.

Equipment	Model	Serial No.	Vendor	Next Cal. Date	Use
Test Receiver	ESPI3	101171	ROHDE & SCHWARZ	2019.08.03	
Test Receiver	ESR7	101120	ROHDE & SCHWARZ	2019.08.03	
EMI Receiver	9010	274WX90601	PMM	2019.08.03	
LISN	NSLK 8127	8127518	SCHWARZBECK	2019.08.03	
Two-Line V-Network	ENV216	3560.6550.12- 101874-Rq	ROHDE & SCHWARZ	2019.08.03	
Two-Line V-Network	ENV216	3560.6550.12- 102073-Ax	ROHDE & SCHWARZ	2019.08.03	
Four-Line V-Network	ENV432	101284	ROHDE & SCHWARZ	2019.08.03	

4.2.2 Test equipment used

Page: 12 of 43

4.2.3 Test data

- Observation time: 120 min

Frequency	150 kHz	500 kHz	1.4 MHz	30 MHz
Continuous Limit, L	66	56	56	60
Click rate, N	-	-	-	-
Click level*, Lc	-	-	-	-
Click limit, Lq = Lc + L	-	-	-	-
Counted clicks exceeding the click limit (Number)	-	-	-	-
Test result	Pass	Pass	Pass	Pass

* The discontinuous disturbance noise was not observed during the test.

The measurement uncertainty is 1.7 dB

The measurement uncertainty is given with a confidence of 95 % with the coverage factor, k = 2.

Page: 13 of 43

Report Number: UCSCE-1902-0011

4.3 Disturbance power

Test Standard		EN 55014-1:2006/A2:2011				
Test venue	Shield Room 2					
Tested Date	2019.02.07					
Input Ratings		230 V~, 50 Hz				
Temperature	18.9 °C	Humidity	32.8 % R.H.			
Test result		Met Class A / Pass				

4.3.1 Limit

	Househ similar a	icld and ppllances			To	ools		
Frequen cy range			Rated monot exceed	otor power ling 700 W	Rated mo above 700 exceeding	otor power W and not g 1 000 W	Rated mo above 1	tor power 000 W
(MHz)	dB(pW) Quasi- peak	dB(pW) Average	dB(pW) Quasi- peak	dB(pW) Average	dB(pW) Quasi- peak	dB(pW) Average	dB(pW) Quasi- peak	dB(pW) Average
30 ~ 300	45 ~ 55	35 ~ 45	45 ~ 55	35 ~ 45	49 ~ 59	39 ~ 49	55 ~ 65	45 ~ 55

4.3.2 Test set-up and procedure

EUT was placed on a wooden table 0.8 m above the floor and 0.8 m from any conductive structure except 0.4 m away from vertical reference plan when tested in shielded room.

EUT was placed as close as possible to the absorbing clamp's zero point (end of sideway) and the lead to be measured was extended to at 6 m length.

The lead was then led through the "absorbing clamp" which is a current probe followed by 0.5 m of highly absorptive ferrite.

A peak detector scan was conducted at the clamps zero-point in the frequency range 30 MHz to 300 MHz.

This overview scan with peak detector is presented in the report.

A "maximum search" was conducted to fine the maximum emitting point along the lead.

This was done by moving the clamp along the cable (from 0 m to 6 m) and constantly measures the emission.

The clamp was then moved to the maximum point where a quasi-peak and, if required, an average measurement was conducted.

This procedure was repeated for each single frequency found with the peak detector scan. The reading on the measurement receiver is observed for about 15 s for each measurement.

The highest readings were recorded with the exception of any isolated spike, which were ignored.

A test at about 50 MHz made over a range of 0.9 to 1.1 times the rated voltage in order to check whether the level of disturbance varies considerably with the supply voltage.

Page: 14 of 43

Report Number: UCSCE-1902-0011

4.3.3 Test equipment used

Equipment	Model	Serial No.	Vendor	Next Cal. Date	Use
Test Receiver	ESPI3	101171	ROHDE & SCHWARZ	2019.08.03	
Test Receiver	ESR7	101120	ROHDE & SCHWARZ	2019.08.03	
Absorbing Clamp	MDS 21	80870	ROHDE & SCHWARZ	2019.08.06	

4.3.4 Test data

- Frequency range : 30 MHz ~ 300 MHz : 120 kHz

- Bandwidth

[Quasi-Peak]

Frequency [MHz]	INSERTION LOSS [dB]	Limit [dB(pW)]	Reading [dB(pW)]	Results [dB(pW)]	Margin [dB]
32.13	24.62	45.08	-0.28	24.34	-20.74
49.80	22.06	45.73	3.89	25.95	-19.78
55.05	21.90	45.93	10.90	32.80	-13.13
65.04	21.63	46.30	1.15	22.78	-23.52
93.87	21.50	47.37	3.58	25.08	-22.29
149.76	20.93	49.44	-3.24	17.69	-31.75
177.24	20.45	50.45	1.88	22.33	-28.12
217.98	19.87	51.96	-2.61	17.26	-34.70
298.77	20.63	54.95	-10.62	10.01	-44.94

[Average]

Frequency	INSERTION	Limit	Reading	Results	Margin
[MHz]	LOSS [dB]	[dB(pW)]	[dB(pW)]	[dB(pW)]	[dB]

* **Results** [dB(pW)] = Reading [dB(pW)] + Insertion Loss [dB]

* Margin [dB] = Result [dB(pW)] - Limit [dB(pW)]

The measurement uncertainty is 2.9 dB

The measurement uncertainty is given with a confidence of 95 % with the coverage factor, k = 2.

Page: 15 of 43

4.4 Harmonics current emissions

Test Standard		EN 61000-3-2:2014				
Test venue		EMS 1				
Tested Date		2019.02.07				
Input Ratings		230 V~, 50 Hz				
Temperature	19.5 °C	Humidity	32.1 % R.H.			
Test result		Met Class A / Pass				

4.4.1 Test setup and procedure

The equipment is supplied in series with shunt(s) Rms or current transformer(s) from a source having the same Nominal voltage and frequency as the rated supply voltage and frequency of the Measurements shall be made under Normal load, or conditions for adequate heat discharge, and underequipment.

Normal operating conditions. User's operation controls or automatic programmers shall be set to produce the maximum harmonic component, for each successive harmonic component in turn. For the purpose of harmonic current limitation, equipment is classified as follows:

Class A : Equipment not specified in one of the three other Classes shall be considered as Class A equipment.

- Balanced three-phase equipment;
- Household appliances, excluding equipment identified as class D;
- Tools, excluding portable tools;
- Dimmers for incandescent lamps;
- Audio equipment.

Class B:

- portable tools;

- arc welding equipment which is not professional equipment.

Class C:

- lighting equipment.

Class D: Equipment having a specified power according to 6.2.2 less than or equal to 600 W, of the following types:

- personal computers and personal computer monitors;
- television receivers.
- refrigerators and freezers having one or more variable-speed drives to control compressor motor(s).

4.4.2 Test equipment used

Equipment	Model	Serial No.	Vendor	Next Cal. Date	Use
5 k VA AC Power Source	5001iX	California Instruments	S59160	2019.08.08	

Page: 16 of 43

4.4.3 Test data

Test Result: Pass Source qualification: Normal

Current & voltage waveforms

Harmonics and Class A limit line

European Limits

Test result: Pass Worst harmonics H17-5.9% of 150% limit, H21-8.3% of 100% limit

Page: 17 of 43

UCS Co., Ltd.

www.ucs.co.kr

Test Result: Pass Source qualification: Normal THC(A): 0.044 I-THD(%): 218.1 POHC(A): 0.018 POHC Limit(A): 0.251							
Highest	Highest parameter values during test:V_RMS (Volts):229.94I_Peak (Amps):0.533I_Fund (Amps):0.020Crest Factor:8.987Power (Watts):4.5Power Factor:0.386						
Harm#	Harms(avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2	0.001	1.080	N/A	0.001	1.620	N/A	Pass
3	0.015	2.300	0.7	0.020	3.450	0.6	Pass
4	0.001	0.430	N/A	0.001	0.645	N/A	Pass
5	0.015	1.140	1.3	0.019	1.710	1.1	Pass
6	0.001	0.300	N/A	0.001	0.450	N/A	Pass
7	0.015	0.770	1.9	0.018	1.155	1.6	Pass
8	0.001	0.230	N/A	0.001	0.345	N/A	Pass
9	0.014	0.400	3.5	0.017	0.600	2.9	Pass
10	0.001	0.184	N/A	0.001	0.276	N/A	Pass
11	0.013	0.330	4.0	0.016	0.495	3.2	Pass
12	0.001	0.153	N/A	0.001	0.230	N/A	Pass
13	0.013	0.210	6.0	0.015	0.315	4.6	Pass
14	0.001	0.131	N/A	0.001	0.197	N/A	Pass
15	0.012	0.150	7.8	0.013	0.225	5.8	Pass
16	0.001	0.115	N/A	0.001	0.173	N/A	Pass
17	0.011	0.132	8.2	0.012	0.198	5.9	Pass
18	0.001	0.102	N/A	0.001	0.153	N/A	Pass
19	0.010	0.118	8.3	0.010	0.178	5.8	Pass
20	0.001	0.092	N/A	0.001	0.138	N/A	Pass
21	0.009	0.107	8.3	0.009	0.161	5.6	Pass
22	0.001	0.084	N/A	0.001	0.125	N/A	Pass
23	0.008	0.098	8.1	0.008	0.147	5.5	Pass
24	0.001	0.077	N/A	0.001	0.115	N/A	Pass
25	0.007	0.090	7.8	0.007	0.135	5.3	Pass
26	0.001	0.071	N/A	0.001	0.107	N/A	Pass
27	0.006	0.083	7.5	0.006	0.125	5.1	Pass
28	0.001	0.066	N/A	0.001	0.099	N/A	Pass
29	0.005	0.078	7.0	0.006	0.116	4.8	Pass
30	0.001	0.061	N/A	0.001	0.092	N/A	Pass
31	0.005	0.073	N/A	0.005	0.109	N/A	Pass
32	0.001	0.058	N/A	0.001	0.086	N/A	Pass
33	0.004	0.068	N/A	0.005	0.102	N/A	Pass
34	0.001	0.054	N/A	0.001	0.081	N/A	Pass
35	0.004	0.064	N/A	0.004	0.096	N/A	Pass
36	0.001	0.051	N/A	0.001	0.077	N/A	Pass
37	0.003	0.061	N/A	0.004	0.091	N/A	Pass
38	0.001	0.048	N/A	0.001	0.073	N/A	Pass
39	0.003	0.058	N/A	0.004	0.087	N/A	Pass
40	0.001	0.046	N/A	0.001	0.069	N/A	Pass

Page: 18 of 43

Voltage Source Verification Data (Run time)

Test Result: Pass Source qualification: Normal							
Highest p	arameter valu	es during	g test:				
Ve	oltage (Vrms):	229.94		Free	quency(Hz):	50.00	
L	Peak (Amps):	0.533		I_RI	MS (Amps):	0.089	
	Fund (Amps):	0.020		Cre	st Factor:	8.987	
P	ower (Watts):	4.5		Pow	er Factor:	0.386	
Harm#	Harmonics	s V-ms	Limit	V-rms	% of Limi	t	Status
2		0.020		0.460	4.3	5	OK
3		0.446		2.069	21.5	7	OK
4		0.018		0.460	3.8	4	OK
5		0.011		0.920	1.1	5	OK
6		0.018		0.460	3.8	4	OK
7		0.040		0.690	5.8	0	OK
8		0.007		0.460	1.4	2	OK
9		0.116		0.460	25.1	4	OK
10		0.006		0.460	1.2	2	OK
11		0.068		0.230	29.4	5	OK
12		0.014		0.230	6.1	8	OK
13		0.035		0.230	15.3	0	OK
14		0.004		0.230	1.6	2	OK
15		0.015		0.230	6.6	8	OK
16		0.011		0.230	4.5	(OK
1/		0.007		0.230	2.9	6	OK
18		0.014		0.230	5.9	9	OK
19		0.014		0.230	6.1	<u>(</u>	OK
20		0.012		0.230	5.2	1	OK
21		0.012		0.230	5.2	1	OK
22		0.004		0.230	1.8	37	
23		0.009		0.230	4.0	<u>(</u>	UN
24		0.002		0.230	0.8	9	
20		0.008		0.230	3.5	4	
20		0.003		0.230	1.3	4	OK
21		0.009		0.230	5.9	2	
20		0.003		0.230	1.1	5	
29		0.008		0.230	3.2	9	
31		0.003		0.230	1.3	5	
22		0.007		0.230	J.1	6	
32		0.002		0.230	2.0	5	
34		0.007		0.230	2.9	2 2	
35		0.002		0.230	2.4	4	
36		0.007		0.230	0.0	6	
37		0.002		0.230	0.0	5	
30		0.000		0.230	3.0	2	
30		0.002		0 230	3.0	6	OK
40		0.003		0 230	10	Ă	OK
40		0.004		0.200	1.9	-	

The uncertainty of our equipment for flicker measurement is 5 %.

The measurement uncertainty is given with a confidence of 95 % with the coverage factor, k = 2.

Page: 19 of 43

4.5 Voltage changes, Voltage fluctuations and flicker

Test Standard	EN 61000-3-3:2013				
Test venue		EMS 1			
Tested Date	2019.02.07				
Input Ratings	230 V~, 50 Hz				
Temperature	19.5 °C Humidity 32.1 % R.H.				
Test result	Met / Pass				

4.5.1 Test set-up and procedure

EUT was connected to the power analyzer system.

Measurement was performed to obtain the desired flicker parameters.

The measuring time depends on which parameters are to be measured.

Plt = 2 h

Pst = 10 min

Controls and automatic programs shall be set to produce the most unfavorable sequence of voltage changes, using only those combinations of controls and programs are mentioned by the manufacturer in the instruction manual.

4.5.2 Test equipment used

Equipment	Model	Serial No.	Vendor	Next Cal. Date	Use
Hamonics/Flicker	5001IX-208- 150/300	S59160	C.I.	2019.08.08	
Precision Power Analyzer	LMG670	01621511	ZES ZIMMER	2019.02.06	
Reference Impedance	NI2415	NI2415-3	ZES ZIMMER	-	
AC Power Source	360-AMX	1774	PACIFIC POWER SOURCE	-	

Page: 20 of 43

4.5.3 Test data

Flicker Test Summary per EN/IEC61000-3-3 Ed. 3.0 (2013) (Run time)

0	Test limit (mS):	500.0	Pass
0.00	Test limit (%):	3.30	Pass
0.00	Test limit (%):	4.00	Pass
0.064	Test limit:	1.000	Pass
0.028	Test limit:	0.650	Pass
	0 0.00 0.00 0.064 0.028	0 Test limit (mS): 0.00 Test limit (%): 0.00 Test limit (%): 0.064 Test limit: 0.028 Test limit:	0 Test limit (m S): 500.0 0.00 Test limit (%): 3.30 0.00 Test limit (%): 4.00 0.064 Test limit: 1.000 0.028 Test limit: 0.650

The uncertainty of our equipment for flicker measurement is 5 %. The measurement uncertainty is given with a confidence of 95 % with the coverage factor, k = 2.

Page: 21 of 43

4.6 Electrostatic discharge

Test Standard	EN 61000-4-2:2009, Criteria: B			
Test venue	EMS 2			
Test Level		HCP/VCP/Contact: ± 4 kV		
Test Level		Air: ± 8 kV		
Discharge Impedance	330 Ω / 150 pF			
Test Time	at least 10 times for each adapting point			
Tested Date	2019.02.08			
Input Ratings	230 V~, 50 Hz			
Temperature	18.1 °C Humidity 35.1 % R.H.			
Atmospheric pressure	101.1 kPa			
Test Result	A Met by Criterion / Pass			

4.6.1 Test set-up and procedure

A ground reference plane was located on the floor, and connected to earth via a low Impedance connection.

The return cable of the ESD generator was connected to the reference plane.

In case of floor standing equipment, EUT was placed on the reference plane on 0.1 m of insulating Support.

In case of table top equipment, EUT was placed on a wooden table 0.8 m above the reference grounded floor.

A horizontal coupling plane (HCP) was placed on the table, and Connected to the reference plane via a 470 kohm resistor located in each end (0.5 mm insulating support between EUT and HCP).

In both cases a vertical coupling plane (VCP) of 0.5 m x 0.5 m was located 0.1 m from the EUT's sides.

The VCP was connected to the reference plane in the same matter as the HCP.

4.6.2 Test equipment used

Equipment	Model	Serial No.	Vendor	Next Cal. Date	Use
ESD Simulator	ESS-2000	4010C63927	NoiseKen	2019.08.08	
HAEFELY TEST AG	ONYX 16	177897	HAEFELY TECHNOLOGY	2020.02.11	•
НСР	-	-	-	-	•
VCP	-	-	-	-	

Page: 22 of 43

4.6.3 Test data

Location	Applied Level (±)	Criteria	Results
VCP	4 kV	В	А
НСР	4 kV	В	А

* There was no deviation from normal operation condition.

Location (EUT)	Applied Level (±)	Method	Criteria	Results
(1) Cove part	8 kV	Air	В	А
(2) Metal cove, screw part	4 kV	Contact	В	А

* There was no deviation from normal operation condition.

It has been demonstrated that the ESD generator meets the specified requirements in the standard with at least a 95 % confidence.

Page: 23 of 43

4.6.4 ESD points

[ESD points 1]

[ESD points 2]

UQE-TRF-01(Rev.1)

Page: 24 of 43

4.7 Electric fast transient/burst immunity

Test Standard	EN 61000-4-4:2012, Criteria: B				
Test venue	EMS 2				
Coupling	Mains port - Coupling De	Mains port - Coupling Decoupling Network, Signal port - Capacitive Coupling Clamp			
Test Level	AC Mains: ± 1 kV Peak				
Repetition Freq.	5 kHz, Tr / Th = 5 / 50 ns				
Coupling Time	120 s				
Tested Date	2019.02.08				
Input Ratings		230 V~, 50 Hz			
Temperature	18.3 ℃ Humidity 35.1 % R.H.				
Atmospheric pressure	101.1 kPa				
Test Result	A Met by Criterion / Pass				

4.7.1 Test set-up and procedure

A ground reference plane was located on the floor.

EFT generator was connected to reference ground plane via low impedance connection.

For floor standing equipment, EUT was placed on a 0.1 m wooden table.

For tabletop equipment, EUT was placed on a 0.1 m above the ground reference plane.

Test generator and coupling/decoupling network was placed on, and bounded to, the ground reference plane.

When using the coupling clamp, the minimum distance between the coupling plates and all other conductive surfaces, except the ground reference plane beneath the coupling clamp, Shall be 0.5 m.

4.7.2 Test equipment used

Equipment	Model	Serial No.	Vendor	Next Cal. Date	Use
EMC IMMUNITY TEST	EMCPRO PLUS	0906221	ThermoFisher Scientific	2019.08.03	
Capacitive Clamp	CCL	0904227	ThermoFisher Scientific	2019.08.03	
COMPACT IMMUNITY TEST SYSTEM	AXOS5	180998	HAEFELY EMC TECHNOLOGY	2020.01.31	•
THREE PHASES EXTERNAL CDN	FP-COMB32	181211	HAEFELY EMC TECHNOLOGY	2020.02.01	
Capacitive Coupling Clamp	IP4B	181514	HAEFELY EMC TECHNOLOGY	2020.02.01	

Page: 25 of 43

4.7.3 Test data

EFT Coupling Point Level (±)		Criteria	Results
L - N	1 kV	В	А

* There was no deviation from normal operation condition.

It has been demonstrated that the EFT/Burst generator meets the specified requirements in the standard with at least a 95 % confidence.

Page: 26 of 43

4.8 Surge immunity

Test Standard	EN 61000-4-5:2014, Criteria: B			
Test venue		EMS 2		
Coupling	C	Coupling Decoupling Netwo	rk	
Test Level	A	C Mains (Line to Line): ± 1	kV	
Number of surge/time	1 time / 60 s, total 5 times			
Angles	90°, 270°			
Tested Date	2019.02.08			
Input Ratings	230 V~, 50 Hz			
Temperature	(18.25 \pm 0.05) °C Humidity (35.05 \pm 0.05) % R.H.			
Atmospheric pressure	101.1 kPa			
Test Result	A Met by Criterion / Pass			

4.8.1 Test set-up and procedure

A ground reference plane was located on the floor. SURGE generator was connected to reference ground plane via low impedance connection. For floor standing equipment, EUT was placed on a 0.1 m wooden table.

For table top equipment, EUT was placed on a wooden table (0.1 m) above the reference plane.

4.8.2 Test equipment used

Equipment	Model	Serial No.	Vendor	Next Cal. Date	Use
EMC IMMUNITY TEST	EMCPRO PLUS	0906221	ThermoFisher Scientific	2019.08.03	
I/O Lin Coupler/Decoupler	CM-I/OCD	0906226	ThermoFisher Scientific	-	
Telecom coupler/Decoupler	CM-TELCD	0905226	ThermoFisher Scientific	-	
COMPACT IMMUNITY TEST SYSTEM	AXOS5	180998	HAEFELY EMC TECHNOLOGY	2020.01.31	
THREE PHASES EXTERNAL CDN	FP-COMB32	181211	HAEFELY EMC TECHNOLOGY	2020.02.01	

Page: 27 of 43

4.8.3 Test data

Coupling Point	Level (±)	Criteria	Results	
L to N	1 kV	В	А	

* There was no deviation from normal operation condition.

* The EUT does not have the signal ports that may connect directly to outdoor cables.

It has been demonstrated that the surge tester meets the specified requirements in the standard with at least a 95 % confidence.

Page: 28 of 43

4.9 Conducted disturbance induced by RF fields immunity

Test Standard	EN 61000-4-6:2014, Criteria: A			
Test venue		EMS 2		
Tested Frequency		150 kHz ~ 230 MHz		
Test Level/Modulation		3 V (AM 80 %, 1 kHz)		
Coupling Method	AC Mains: M2			
Dwell Time	1 s			
Step Size	log 1 % step			
Tested Date	2019.02.08			
Input Ratings	230 V~, 50 Hz			
Temperature	(18.3 \pm 0.1) °C Humidity (34.9 \pm 0.1) % R.H.			
Atmospheric pressure	101.1 kPa			
Test Result	A Met by Criterion / Pass			

4.9.1 Test set-up and procedure

A ground reference plane was located on the floor.

The test was performed on a ground reference plane on a 0.1 m wooden table.

This test were performed using CDN for mains, clamp for signal and injection probe.

The frequency range was swept from 150 kHz to 230 MHz. This frequency range was modulated with 1 kHz sine wave at 80 %.

The signal generators provided the modulated frequency at a 1 % step size.

The power and all network cable, I/O cables longer than 3 m length were tested.

4.9.2 Test equipment used

Equipment	Model	Serial No.	Vendor	Next Cal. Date	Use
CDN M2	FCC-801-M2-16A	091165	FCC	2019.08.03	•
CDN M3	FCC-801-M3-16A	091994	FCC	2019.08.03	
EM INJECTION CLAMP	F-203I-23mm	091199	FCC	2019.08.06	
Continuous Wave Simulator	CWS 500N1	P1247105423	EM Test	2020.02.01	•
Coaxial Fixed Attenuator	ATT6/75	P1306112966	EM Test	2020.02.01	•

Page: 29 of 43

4.9.3 Test data

Coupling Point	Coupling Method	Criteria	Results	
AC Mains	CDN (M2)	А	А	

* There was no deviation from normal operation condition.

The measurement uncertainty is 2.2 dB

The measurement uncertainty is given with a confidence of 95 % with the coverage factor, k = 2.

Page: 30 of 43

4.10 Voltage dips and short interruptions

Test Standard	EN 61000-4-11:2004, Criterion : C		
Test venue	EMS 2		
Number of reduction	3		
Duration	10 s		
Tested Date	2019.02.08		
Input Ratings	230 V~, 50 Hz		
Temperature	18.2 °C Humidity 35.0 % R.H.		
Atmospheric pressure	101.1 kPa		
Test result	A Met by Criterion / Pass		

4.10.1 Test set-up and procedure

The dips/interruption test is only applicable to AC mains.

The dips/interruptions were applied at zero crossing.

4.10.2 Test equipment used

Equipment	Model	Serial No.	Vendor	Next Cal. Date	Use
EMC IMMUNITY TEST	EMCPRO PLUS	0906221	ThermoFisher Scientific	2019.08.03	
COMPACT IMMUNITY TEST SYSTEM	AXOS5 & DIP 116	180998	HAEFELY EMC TECHNOLOGY	2020.01.31	

Page: 31 of 43

4.10.3 Test data

Test	Test Level (% U _T)	Periods	Criteria	Results
Voltage dips	100 %	0.5	С	А
	60 %	10	С	А
	30 %	25	С	А

* There was no deviation from normal operation condition.

It has been demonstrated that the voltage dips and interruptions generator meets the specified requirements in the standard with at least a 95 % confidence.

Page: 32 of 43

5. EUT Photos

5.1 Test Setup Photographs

5.1.1 Conducted disturbance (AC mains power ports)

[Rear view]

UQE-TRF-01(Rev.1)

Page: 33 of 43

5.1.2 Mains terminal discontinuous disturbance voltage

5.1.3 Disturbance power

UQE-TRF-01(Rev.1)

Page: 34 of 43

5.1.4 Harmonics current emissions

5.1.5 Voltage changes, Voltage fluctuations and flicker

UQE-TRF-01(Rev.1)

Page: 35 of 43

5.1.6 Electrostatic discharge

5.1.7 Electric fast transient/burst immunity

UQE-TRF-01(Rev.1)

Page: 36 of 43

5.1.8 Surge immunity

5.1.9 Conducted disturbance induced by RF fields immunity

UQE-TRF-01(Rev.1)

Page: 37 of 43

5.1.10 Voltage dips and short interruptions

Page: 38 of 43

5.2 External Photographs of EUT

UQE-TRF-01(Rev.1)

Page: 39 of 43

5.3 Internal Photographs of EUT

5.3.1 Internal view

Page: 40 of 43

5.3.2 Internal board view

UQE-TRF-01(Rev.1)

Page: 41 of 43

UQE-TRF-01(Rev.1)

Page: 42 of 43

UQE-TRF-01(Rev.1)

Page: 43 of 43

Manufacturer / Approval Declaration

The following identical model(s):